حاصلضرب تانسوری و حفظ حدود، برای سیستم هایی که روی تکواره ها تعریف می شوند
thesis
- دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر
- author هادی سیدآبادی
- adviser غلامرضا مقدسی لیلا شریفان
- Number of pages: First 15 pages
- publication year 1392
abstract
در سال 1971 اشتنتروم با هدف مطالعه –s سیستم هایی خاص، که او آنها را هموار قوی نامید، مقاله ای را چاپ و منتشر کرد ]17[. مقاله اشتنتروم به -sسیستم هایی چون اختصاص دارد و بیان می کند که تابعگون ×-- که از رسته -sسیستم های چپ به رسته مجموعه هاست، تحت شرایطی، عقب بر و برابر ساز را حفظ می کند. ولی در مورد حفظ سایر حدود از جمله حاصل ضرب یا اشتراک متناهی یا دلخواه،درمطالعه ای انجام نشده است. از جمله کسانی که تحقیقات اشتنتروم را ادامه دادند، بولمن- فلمینگ و لان بودند که در سال 2001 مقاله ای تحت عنوان «حاصل ضرب تانسوری و حفظ حدود، برای سیستم هایی که روی تکواره ها تعریف می شوند»]6[ را چاپ و منتشر کردند که مرجع اصلی این پایان نامه می باشد. در این پایان نامه، با استفاده از مقاله فوق و چند منبع دیگر، حالات مختلف همواری در -sسیستم ها و به خصوص -sسیستم های خارج قسمتی مورد بحث و بررسی قرار گرفته و در پایان ارتباط بین آنها بیان شده است.
similar resources
حاصلضرب های تانسوری و حفظ حدها برای سیستم ها روی تکواره ها
در این پایان نامه به بررسی این موضوعات می پردازیم که تابعگون چه زمانی تمام حدها، حاصل ضرب ها و تمام حاصل ضرب های متناهی را حفظ می کند. که این خواص را ابرهمواری، حاصل ضرب همواری و به طور متناهی حاصل ضرب همواری سیستم ها معرفی می کنیم.
15 صفحه اولبررسی آشوب و آنتروپی برای نگاشت هایی که روی بازه های حقیقی تعریف می شوند
هدف این پایان نامه بررسی مجموعه های امگا حدی و شناخت خواص آن، آشنایی با مجموعه نقاط بازگشتی و ناسرگردان یک تابع ،معرفی رابطه ی پروکسیمال و مجموعه های – f جدانشدنی و نهایتاً ارائه ی مطالبی در رابطه با آنتروپی صفر و آشوب برای توابعی است که روی بازه ای از اعداد حقیقی تعریف می شوند. همچنین نشان داده می شود که رابطه ی پروکسیمال برای نگاشت هایی که روی بازه های حقیقی تعریف می شوند و دارای آنتروپی صفر...
15 صفحه اولحتی ستاره ها نیز پیر می شوند و می میرند
ستارگان، تمام انرژی موجود در هسته را مصرف می کنند. ستارگانی که دارای جرم بزرگتری هستند خیلی سریع تر از ستارگان دارای جرم کمتر به این وضعیت می رسند، زیرا سوخت آنها به سرعت خاتمه می یابد. در این قسمت، مراحل بعدی زندگی یک ستاره و این که چه اتفاقی برای آن خواهد افتاد را بررسی خواهیم کرد.
full textگراف¬هایی که با طیفشان مشخص می¬شوند
بررسی طیف گراف ها، ابزاری جهت بررسی گراف ها از دیدگاه جبری است. گراف های ds گراف هایی هستند که هیچ گراف غیر یکریخت دارای طیف ماتریس مجاورت یکسان با آنها نباشد. در این پایان نامه به بررسی خانواده گراف های و پرداخته و تحقیق می کنیم که آیا این گراف ها ds هستند یا خیر. در ضمن طیف ماتریس لاپلاسین گراف ها را تعریف و یکتایی گراف ها را تحت طیف ماتریس لاپلاسین بررسی می کنیم و نشان می دهیم که گراف و ...
My Resources
document type: thesis
دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023